Dietary advice based on food-specific IgG results

Geoffrey Hardman
Centre for Health Economics, University of York, Heslington, York, UK, and
Gillian Hart
YorkTest Laboratories Ltd, York Science Park, York, UK

Abstract
Purpose – To provide evidence that elimination diet based on food-specific IgG test results is an effective, reliable and valid aid to the management of chronic medical conditions.

Design/methodology/approach – A postal survey, commissioned by Allergy UK, was carried out with 5,286 subjects reporting a wide range of chronic medical conditions, who had taken a food-specific IgG enzyme-linked immunosorbent assay blood test. Questionnaires, issued three months after the results, were analysed to investigate the effect of eliminating the foods identified by the test. To check for response bias, a separate group of patients who had not responded were interviewed by telephone. The analysis and reporting of the data was carried out at the University of York.

Findings – Of patients who rigorously followed the diet 75.8 per cent had a noticeable improvement in their condition. Of patients who benefited from following the recommendations 68.2 per cent felt the benefit within three weeks. Those who reported more than one condition were more likely to report noticeable improvement. 81.5 per cent of those that dieted rigorously and reported three or more co-morbidities showed noticeable improvement in their condition. For those who dieted rigorously and reported high benefit, 92.3 per cent noticed a return of symptoms on reintroduction of the offending foods.

Originality/value – These data provide evidence for the use of elimination diet based on food-specific IgG blood test results as an aid to management of the symptoms of a range of chronic medical conditions.

Keywords Food products, Diet

Introduction
A role for food-specific IgG antibodies in the underlying mechanism of food intolerance (non-IgE mediated food allergy) has been proposed, as has the measurement of food-specific antibodies as a strategy for identifying foods to which a patient may be sensitive (Marinkovich, 1996). It is proposed that the presence of food-specific IgG indicates a potential sensitivity to that particular food and that the patient may achieve benefit by eliminating the food(s) from their diet. Recent study showed a consistent increase in IgG4 antibody titres across the three Irritable Bowel Syndrome (IBS) subgroups compared to controls for wheat, beef, pork, lamb, and soya bean (Zar et al., 2005), and a clinically significant improvement in symptoms has been observed in IBS patients eliminating foods identified by such a method (Atkinson et al., 2004). However, the exact role of IgG antibodies as markers of food intolerance in general is not clear. IgG antibodies to food antigens are often present in healthy individuals and are generally considered to be part of the normal immune response to food allergens (Barnes, 1995).

Food intolerance has been associated with a myriad of chronic symptoms including headaches (Rees et al., 2005), intestinal and skin symptoms (Sampson and McCaskill, 1985), behavioural changes and respiratory disorders (Pelikan, 1988). Currently, the best accepted method for diagnosing and confirming food intolerance is empirical, by elimination diet and subsequent challenge (Radcliffe, 2002). Using this method patients
generally eat a restricted diet (elimination diet) for several weeks. If there is no symptomatic improvement during this time, it is assumed that the food type that has been restricted is not affecting their symptoms, and the process is repeated with another food type. This method is very laborious, and it is difficult to test all the combinations of food types that may be causing the problems.

Methodology

Patients

5,286 subjects who had taken the YORKTEST foodSCAN 113 test for relief of chronic symptoms; 26.8 per cent male and 72.4 per cent female (0.7 per cent did not reply to this question).

In terms of age range, 12.1 per cent were under 30 years old, 38.0 per cent were between 30 and 49 years old, 38.2 per cent were between 50 and 69 years old, and 7.6 per cent were 70 or over (4.1 per cent did not report their age). The age distributions for the two genders were similar.

Method

YORKTEST Laboratories Ltd (York, UK) carry out an enzyme-linked immunosorbent assay (ELISA) test for food-specific IgG antibodies. In practice, a blood collection kit is sent direct to the consumer. The consumer uses the sterile lancet in the kit to collect the whole blood (finger prick) sample onto an absorbent “wand”. This sample is then posted back to the laboratory. The sample is extracted from the “wand”, and then tested in the laboratory. The results of the semi-quantitative tests are sent to patients, and their medical practitioners (if involved), with classification scores in arbitrary units. Based on these results the patient is advised to stop or reduce the intake of the foods identified, and patients are entitled and encouraged to take advice on obtaining a balanced diet from an independent Nutritionist as part of the service. The service is compliant with the requirements of the European In Vitro Diagnostic Directive[1].

A postal survey was carried out of subjects who had undertaken the YORKTEST foodSCAN 113 testing service; a test for the presence of IgG antibodies to one-hundred and thirteen different foods. Questionnaires were issued to subjects three months after the test results had been issued to them.

Information was analysed from two questionnaires. The information was analysed independently by the University of York. The outcome measures used for this study were categorical and based on self-reported perceived improvements by the patients. For the purpose of analysis SPSS has been used, on the two data sets separately and on a combined data set of patients where the questions have been comparable. The analysis used non-parametric statistical tests where appropriate. The analysed data responses from both versions of the questionnaire have shown that statistically the results of the entire study combined are valid. The first database contained 2,260 records and the second 3,026; total 5,286.

In order to check for response bias, a group of 107 patients who had taken the foodSCAN 113 test, and who had been tested between one year and eighteen months previously but who had not replied to the postal questionnaire, were interviewed by telephone. The results from this group were analysed separately and the results compared with the groups of patients who had replied to the postal questionnaire.

Results

Results from the 5,286 responders have been analysed as follows.
How rigorously was the dietary advice followed?
Out of the 5,211 subjects that responded to this question, 3,626 (69.6 per cent) reported that they had rigorously changed their diet as a result of the test, 1,476 (28.3 per cent) reported they had made a reasonable attempt to change their diet, and 109 (2.1 per cent) reported they were unable to change their diet.

How much improvement did patients experience?
5,103 (96.5 per cent) subjects answered the question about benefit. 1,114 (21.8 per cent) reported high benefit (Score 5), 1,526 (29.9 per cent) reported considerable benefit (Score 4) and 1,035 (20.3 per cent) reported moderate benefit (Score 3). 914 (17.9 per cent) reported zero or low benefit (Score 0 or 1), and 514 (10.1 per cent) slight benefit (Score 2). 183 (3.6 per cent) did not reply to this question.

In the absence of a quantitative outcome measure we define reporting high, considerable or moderate benefit as reporting noticeable improvement in their condition(s), thus 3,675 (72.0 per cent) of the patients that replied to this question reported noticeable benefit.

Relationship between adherence to dietary advice and improvement of symptoms
5,057 subjects answered the questions about benefit and adherence to dietary advice. Table I shows the distribution of benefit by how successfully the patients were able to comply with the elimination diet.

Of those who rigorously followed their elimination diet, 2,697 (75.8 per cent) reported noticeable improvement. Of the 1,436 subjects that made a reasonable attempt at the diet, 948 (66.0 per cent) reported noticeable improvement.

Speed of improvement
4,069 (77.0 per cent) subjects replied to a question which asked, “How long after altering your diet did you start to feel the benefits?” 630 (15.5 per cent) reported feeling benefit within four days, 956 (23.5 per cent) between five and eight days, 1,264 (31.1 per cent) between nine and 20 days, 1,002 (24.6 per cent) between 21 and 60 days, and 132 (3.2 per cent) reported feeling benefit over 60 days after altering their diet. 85 (2.1 per cent) reported feeling no benefit.

The length of time taken to benefit for those who rigorously dieted is shown in Figure 1. Out of the 2,899 who showed a noticeable improvement from rigorously dieting, 2,026 (68.2 per cent) reported feeling benefit within three weeks of starting the diet.

<table>
<thead>
<tr>
<th>Level of benefit</th>
<th>Rigorously</th>
<th>Reasonably</th>
<th>Not at all</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero/low</td>
<td>576 (16.2%)</td>
<td>270 (18.8%)</td>
<td>49 (79.1%)</td>
<td>895 (17.7%)</td>
</tr>
<tr>
<td>Slight</td>
<td>286 (8.0%)</td>
<td>218 (15.2%)</td>
<td>3 (4.8%)</td>
<td>507 (10.0%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>595 (16.7%)</td>
<td>431 (30.0%)</td>
<td>3 (4.8%)</td>
<td>1,029 (20.3%)</td>
</tr>
<tr>
<td>Considerable</td>
<td>1,107 (31.1%)</td>
<td>410 (28.6%)</td>
<td>4 (6.5%)</td>
<td>1,521 (30.1%)</td>
</tr>
<tr>
<td>High</td>
<td>995 (28.0%)</td>
<td>107 (7.5%)</td>
<td>3 (4.8%)</td>
<td>1,105 (21.9%)</td>
</tr>
<tr>
<td>Total</td>
<td>3,559 (100.0%)</td>
<td>1,436 (100.0%)</td>
<td>62 (100.0%)</td>
<td>5,057 (100.0%)</td>
</tr>
</tbody>
</table>

Table I.
Level of benefit in relation to adherence to dietary recommendations

Note: Pearson’s chi-square $\chi^2 = 523.28 \ (p = <0.001)$
There is a clear relationship between the overall amount of benefit and the speed with which it is felt, as shown in Figure 2. Those that improve the most are more likely to improve quickly, however it is clear that this may differ according to the particular condition suffered.

Females are more likely to report high benefit than males. 23.6 per cent of females reported high benefit from the diet compared with only 17.3 per cent of males ($\chi^2 = 57.3; p < 0.001$). There was no relationship between gender and how rigorously the diet was maintained. 70.3 per cent of females and 68.2 per cent of males dieted rigorously ($\chi^2 = 2.2; p = 0.331$). Gender did not have any influence on how quickly benefit was felt ($\chi^2 = 9.2; p = 0.101$). 50.3 per cent males were 50 years old or older, whereas 46.9 per cent females were 50 years old or older ($\chi^2 = 13.4; p = 0.004$). Age had a consistent effect on the amount of benefit reported. 25.4 per cent of those under 30 reported high benefit, whereas only 16.1 per cent of those 70 years old or older reported high benefit ($\chi^2 = 55.9; p < 0.001$). Age did not have any influence on how well patients dieted ($\chi^2 = 3.5; p = 0.748$).

Medical conditions

The information obtained from asking which was the primary condition that concerned patients was grouped into diagnostic categories. As previously mentioned this question was not asked of all patients as it was only part of the first questionnaire. Of the 2,221 replies 38.0 per cent were gastro-intestinal, 13.7 per cent were dermatological, 10.7 per cent were neurological, 10.1 per cent were respiratory, 9.4 per cent were psychological, and 6.2 per cent were musculo-skeletal. 11.9 per cent were categorised as “other”.

The distribution of benefit reported varied according to the medical condition of most concern is shown in Table II. For example, 40.6 per cent of patients reporting psychological problems as their main concern report high benefit from dieting.
rigorously, whereas only 21.0 per cent of those reporting respiratory or musculo-skeletal problems as the main concern reported high benefit.

The length of time the patient has had their primary condition does not appear to be associated with benefit felt from dieting rigorously ($\chi^2 = 10.1; p = 0.604$), nor the pattern of dieting behaviour ($\chi^2 = 3.3; p = 0.769$).

In the second questionnaire patients were asked to state all the conditions that concerned them, so data on co-morbidities became available. There were 3,026 subjects who responded to the questions, and 4,818 conditions stated. Of all of these reported conditions 1,805 (37.5 per cent) were gastro-intestinal, 635 (13.2 per cent) were dermatological, 591 (12.3 per cent) were neurological, 445 (9.2 per cent) were respiratory, 708 (14.7 per cent) were psychological, and 411 (8.5 per cent) were musculo-skeletal. 223 (4.6 per cent) were categorised as “other”. 61.1 per cent of patients had

<table>
<thead>
<tr>
<th>Low or none</th>
<th>Moderate or considerable</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastro-intestinal</td>
<td>108 (19.7%)</td>
<td>287 (52.5%)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>39 (28.3%)</td>
<td>70 (50.7%)</td>
</tr>
<tr>
<td>Neurological</td>
<td>34 (22.1%)</td>
<td>72 (46.8%)</td>
</tr>
<tr>
<td>Dermatological</td>
<td>48 (23.6%)</td>
<td>106 (52.2%)</td>
</tr>
<tr>
<td>Musculo-skeletal</td>
<td>36 (36.0%)</td>
<td>43 (43.0%)</td>
</tr>
<tr>
<td>Psychological</td>
<td>27 (18.9%)</td>
<td>58 (40.6%)</td>
</tr>
<tr>
<td>Other</td>
<td>38 (20.7%)</td>
<td>97 (52.7%)</td>
</tr>
</tbody>
</table>

Note: Pearson’s chi-square $\chi^2 = 32.3; p = 0.001$
gastro-intestinal problems either as a main or subsidiary condition. 24.0 per cent of patients had psychological problems either as a main or subsidiary condition.

55.1 per cent of patients reported only one condition, 27.3 per cent reported two conditions and 15.2 per cent reported three or more conditions. Patients with co-morbidities were more likely to report noticeable improvement. Of the 2,029 who dieted rigorously, 70.1 per cent of the 1,086 with one condition reported noticeable improvement, 78.0 per cent of the 587 with two conditions reported noticeable improvement, and 81.5 per cent of the 356 with three or more conditions reported noticeable improvement ($\chi^2 = 31.6; p < 0.001$).

Reintroduction of foods
In the second questionnaire, patients were asked if they had reintroduced any of the offending foods after starting the diet. Subjects were asked specifically to say whether the result of reintroducing foods was a strong return of symptoms, a slight return of symptoms, or no change. Of the 3,026 subjects that responded to the second questionnaire, 2,275 (75.2 per cent) said they had reintroduced offending foods either on purpose or by accident.

2,219 of these patients also answered the question regarding the return of symptoms. 824 (37.1 per cent) reported a strong return of symptoms, 902 (40.6 per cent) reported a slight return of symptoms, and 493 (22.2 per cent) reported no change. That is 77.7 per cent reported the return of symptoms after the reintroduction of offending foods.

Information concerning the conditions under which patients deliberately reintroduced offending foods was not collected but the advice the patients received on dieting did suggest that under certain circumstances foods could be introduced after a period of time. Those reporting more benefit were more likely to feel a return of symptoms after reintroducing offending foods. For those who dieted rigorously and reported high benefit, 92.3 per cent felt a return of symptoms after reintroducing offending foods.

Follow-up with the non-responders
A follow-up, by telephone, was carried out of subjects who had not responded to the postal questionnaire. This showed that of the 107 patients interviewed, 103 (96.3 per cent) altered their diet, compared with 97.9 per cent for the postal survey respondents. Of the 107 subjects, 73 (68.2 per cent) rigorously dieted compared with the 69.6 per cent who rigorously dieted based on the postal survey. There appears to be no significant difference between responders and non-responders to the postal survey in terms of the way they changed their diet based on the results.

Of those 103 who altered their diet, 101 reported how much they had benefited. Of these, 65 (64.4 per cent) reported noticeable improvement. The comparative percentage for the postal questionnaire was 73.0 per cent. Response bias was present in that a larger percentage of those who responded to the postal questionnaire showed noticeable benefit from following an elimination diet than a sample of non-responders contacted by phone.

Discussion
The current study was not a randomised controlled trial. All the measures considered were categorical and based on self-reported perceptions so quantification of comparisons was not possible. However, there was consistent evidence that noticeable
benefit was gained from removing offending foods from the diet. 75.8 per cent of those that rigorously followed the recommended diet had a noticeable improvement in their condition. 68.2 per cent of those that benefited from following the recommendations felt benefit within three weeks of following the diet. The survey covered subjects with a wide range of medical conditions, and it was clear that those who reported more than one condition were more likely to report noticeable improvement. 81.5 per cent of those that dieted rigorously and reported three or more co-morbidities showed noticeable improvement in their overall condition.

Data from a randomised controlled trial, looking at the effect of following an elimination diet on IBS (Atkinson et al., 2004), showed similar percentages of benefiting subjects. The trial indicated that food exclusion for 12 weeks based on the results of the presence of a food-specific IgG ELISA test resulted in significantly improved symptoms compared to a “placebo diet” comparison group. Furthermore, this improvement was reversed upon four weeks reintroduction of the offending foods, and a significantly greater treatment effect was observed in patients adhering to the diet.

The observation of a clear relationship between adherence to the diet and outcome is critical in showing that the diet is an “active treatment”. Similarly the fact that over three-quarters of subjects who reintroduced offending foods back into their diet, whether on purpose or by accident, showed reoccurrence of their symptoms. These two criteria are the basis for the diagnosis of “food intolerance” by the laborious elimination diet process which, it appears, can be largely “bypassed” by following a diet based on the results of food-specific IgG testing. The percentage of patients reporting noticeable improvement suggests that such specified elimination diets are a valid intervention in the relief of certain symptoms. The degree of success varies with the type of problem being experienced. Having chronic symptoms does not seem to diminish the effect of dieting on the chances of improvement.

Many patients with chronic conditions would rather have a dietary solution to their problem than have to take medication, and this has obvious economic benefits. The results of these analyses go some way towards establishing the validity and reliability of ELISA testing for IgG-mediated food intolerance, and subsequently following an elimination diet based on the results, as an effective aid to the management of certain medical conditions. To complete this process further research is required to establish normal ranges for raised IgG levels from different groups, including those who do not perceive any symptoms as well as research to find the relationship between severity of symptoms, level of antibodies and the degree of benefit from dieting.

Note

References

Dietary advice

About the authors

Geoffrey Hardman has a degree in Sociology and Statistics from Exeter University, which he received in 1947. Since then he has worked in research, firstly with the Family Planning Research Unit at Exeter University and then at the Social Policy Research Unit and the Centre for Health Economics at the University of New York. He now works as an independent data analyst. E-mail: gfh1@york.ac.uk

Gillian Hart is the Technical Director of YORKTEST Laboratories Ltd and YORKTEST Veterinary Services Ltd. Gill joined YORKTEST in 2005 following over 15 years experience in the management of in vitro diagnostic test product development from scientific concept through to manufacture and clinical trial. After completing a PhD in Biochemistry, Gill worked for three years as a Senior Clinical Biochemist, Specialising in Endocrinology at the Hammersmith Hospital. From 1990 Gill worked for Anagen Ltd and Alfa Biotech SpA and was involved in the development of automated immunoassays for the AuraFlex instrument. As Technical Support Manager, Gill was directly responsible for the performance evaluation of 16 automated immunoassays cleared for sale in the US through the FDA 510k process. In 1996 Gill obtained a Professional Certificate in Management at the Open University Business School. From 1999 to 2005 Gill worked as a freelance technical Project manager, and set up DP Project Management and Consulting to service the needs of the IVD Medical Devices industry. Gillian Hart is the corresponding author and can be contacted at: gill.hart@yorktest.com

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our website for further details: www.emeraldinsight.com/reprints